

图 3 功率稳定的典型实验结果

功率的稳定性。测试方法与四机部所规定的测试方 法相同。由于激光器内部振荡特性对功率稳定性的 影响较大,因此功率稳定度不是很高,图3示出了记 录结果,典型的输出功率稳定性为0.5%。

这种稳定方法对激光器是有一定要求的。内腔 激光器相邻纵模偏振方向相互垂直的结论,只有在 腔的各向异性较弱时才是正确的。但是,制造激光 器的工艺过程中,尤其是硬膜腔镜的使用,可能使内 腔激光器有较强的各向异性,使模的偏振特性变得 相当复杂。在某些时刻,相邻纵模的偏振方向突然 相互交换,这将使反馈系发生瞬间混乱,造成失控现 象;另外纵模个数对功率稳定性有一定影响。 三个 纵模运转时,有可能使激光功率的改变量与反馈信 号的变化量不成严格的线性关系,从而致使有较大 的功率起伏。 因此,为了达到较好的频率和功率的 稳定性,必须适当选取激光器,使其基本上处于双纵 模运转。

参考文献

- [1] Lamb W. E.; Phys. Rev., 1964, 134A, 1429.
- [2] Mielenz K. E. et al.; Appl. Opt., 1974, 7, No. 2, 289.
- [3] Wallard A. J.; J. of Phys. E: Sci. Instr., 1972,
 5, No. 9, 926.
- [4] Gordon S. K. et al.; Appl. Opt., 1974, 13, No. 2, 231.
- [5] Ogasawara H. et al.; Appl. Opt., 1983, 22, No. 5, 655.
- [6] Toshihiko Yoshino; Japan. J. Appl. Phys., 1980, 19, No11, 2181.
- [7] 吕可诚等; 《中国激光》, 1983, 10, No. 10, 707.

(南开大学物理系 郭银伏 吕可诚 杜海东 1984年1月23日收稿)

激光曲线场扫描

Abstract: The flat field and curved field scanning loci obtained by high inertial scanning system are reported and characteristics of curved field scanning are studied.

当一束激光入射到一个转动的平面镜面上时, 反射光线由于镜面的转动而发生变化,镜面转角 φ 时,偏转反射角变化为 2φ,一系列反射光线组成的轨迹,形成了激光束扫描。

激光扫描可分两大类,即高惯性和低惯性扫描, 这里主要谈高惯性扫描。高惯性扫描器由电机带动 反射镜组成,电机转轴方向和反射镜法线方向不同, 产生不同特性的扫描器。由于扫描器不同,采用的 照明方式(部分照明、全部照明、过量照明)及扫描器 所处的位置不同等因素, 会产生具有不同特性的平 面场和曲线场扫描。

由电机转轴和平面镜法线方向垂直组成的扫描 器,采用部分照明方式,将产生平面场扫描。(1)转 轴和法线垂直,且转轴在反射镜面上。此时若光线 的入射平面垂直电机转轴,扫描的反射光线经扫描 物镜后会形成直线或非直线的扫描轨迹,由扫描器 和扫描物镜的相对位置决定。(2)转轴和法线垂直, 但转轴不在反射镜面上,一般电机带动的棱柱扫描 镜,属于这种情况。采用棱柱扫描镜提高了扫描次 数,减少了返驰时间,目前国内外的检测大多数采 用这种装置。另外,重要的是保持系统的光学共轭 关系,而其平面 X 或 Y 的另一个方向上可以采用不 同的扫描方式。

由电机转轴和平面镜法线方向垂直,采用过量 照明方式,将产生曲线场扫描。

如果反射镜离轴位移 r 相当棱柱扫描镜(即采 用上述(2)扫描器)的一个面的转角为 φ 时有

 $\rho = 2R_f \cos \phi + 2r$

(1)

۰.

这就是 Pascal's 曲线场方程,并给出扫描速度

 $U(\phi) = 2R_f \phi [1 + (r/R) \cos \phi] \qquad (2)$

1. 当转动半径 r=0 时,即反射镜面在转轴上, 相当于上面(一)、1 扫描器,则公式(1)和(2)简化为

$$\rho = 2R_f \cos \phi$$
 圆扫描 (3)

$$U(\phi) = 2R_f \phi \quad \text{Rgy} \tag{4}$$

 当扫描半径 R_f=0时,即照明聚焦在转轴 上,则(1)和(2)式为

$$\rho=2r$$
 常数 (5)

$$U(\phi) = 2r\phi$$
 常数 (6)

上述公式给出了曲线场扫描圆及非圆瞬时轨迹 方程,由文献[1]整理给出。

由电机转轴和反射镜法线方向夹角为θ组成的 扫描器,采用部分照明方式,将产生曲线场扫描。

上述的曲线场方程是在特殊情况下(转轴和平 面镜法线垂直组成的扫描器)给出的。在图1中,当 反射镜法线和电机转轴方向相同时,反射光线OR、 入射角 ϕ 、反射角 ϕ' 、法线ON;当夹角为 θ 时与上述 对应量分别为OR'、 α 、 α' 、ON'。光线从IO方向入 射,反射镜以 ω_0 角速度旋转,入射角和反射角由于反 射镜转动而瞬变。反射光在球面上的扫描可用球面 三角公式余弦定理推导扫描光点运动瞬时($\omega_0+\omega t$) 轨迹的方程,在球面三角形INN'中有

 $\cos\theta = \cos\phi \cdot \cos\alpha + \sin\phi \cdot \sin\alpha \cdot \cos I$

$$\cos I = \frac{\cos \theta - \cos \phi \cdot \cos \alpha}{\sin \phi \cdot \sin \alpha} \tag{7}$$

 $\cos \alpha = \cos \phi \cdot \cos \theta + \sin \phi \cdot \sin \theta \cdot \cos (\omega_0 + \omega t)$

 $\cos\theta_x = \cos 2\phi \cdot \cos 2\alpha + \sin 2\phi \cdot \sin 2\alpha \cdot \cos I \quad (9)$

将(7)代入(9)后再将(8)式代入(9)整理得:

$$\cos\theta_x = 1 - 2\sin^2\theta \left[1 - \sin^2\phi \cdot \sin^2(\omega_0 + \omega t)\right]$$

(10)

这就是法线和电机转轴夹角为θ时组成的扫描 器扫描的瞬时轨迹方程。

(1) 当 φ=0 时,即激光从转轴方向入射,此时
 (10)式为

$$\cos \theta_x = \cos 2\theta$$
 常数
 $\theta_x = 2\theta$

此种情况光线扫描圆锥角为40,法线扫描圆锥角为 20,光线扫描圆锥和法线扫描圆锥的中心线(也可称 作圆心线)重合,扫描轨迹是两个同圆心线的理想 圆。

(2) 当 θ=0 时,即电机转轴和法线方向相同,
 此时(10)式为

$$\theta_x = 1$$

说明扫描为一点,遵守反射定律,与电机是否转动无 关。

(3) 当 ϕ 、 θ 都不为0时,扫描轨迹是近似圆。 对给定的 ϕ 、 θ 及 ωt (从0到 2π 选定步长)代入(10) 式进行计算(列于附录表)可知:随 ϕ 或 θ 增大,偏离 理想圆越大,明显地变成扁圆。当 θ <45°时, ϕ 由0增加,光线扫描圆锥和法线扫描圆锥的中心线由重 合到分开,两个扫描圆轨迹的圆心线逐渐偏离。当 $\phi=\theta$ 时,光线扫描圆和法线扫描圆内切;当 $\phi=3\theta$ 时,两圆外切。当 $\phi>3\theta$ 两圆分开如图 1。当 $\theta=$ 45°时,在 $\phi=0$ 应用较多,此时 cos $\theta_x=0, \theta_x=90^\circ$ 即通过0点垂直转轴扫描。可以采用不同的照明方 式。为了提高扫描次数和减少返驰时间,由单斜转 动反射镜发展到棱锥反射镜。

扫描特性与扫描器在系统中的位置有关。对聚 焦扫描区域,扫描器所处的位置决定着扫描特性,平 面场扫描只能产生在前置物镜扫描区域,曲线场扫 描一个圆轨迹只能产生在后置物镜扫描区域。扫描 器在扫描区域的位置不仅决定是平面场或者是曲线 场,而且在其确定的位置上,扫描器和扫描物镜的取

(e)

(c)

图 2 附 录

40 €088 ((10+ 400) θ ³					$ \cos \theta_x _{\max}$	the set
	0	40	60	90	$ \cos \theta_x _{\min}$	1.1
	$\cos \theta_x = \cos 2\theta$				0	圆
	pre.62=1		1 (24年69)	情光点运动的合	全就正可能导行	ENRE
	00			ELVIN HEE	成三国领主、新	中的专家
	0	40	60	90	100 (con = 0 con	
1	0.999390828	0.999390904	0.999390967	0.999391013	0.000000185	
10	0.939693	0.939700210	0.939706397	0.939710989	0.000017989	
45	0	0.000125847	0.000228439	0.000304586	0.000304586	
an de la comunicación de la comu	10					
	0	40	60	90	2	手圆
1	0.999390828	0.999398417	0.999404604	0.999409196	0.000018368	
10	0.939693	0.940443977	0.941056488	0.941511111	0.001818111	Pie
45	0	0.012458778	0.022615267	0.030153690	0.030153690	
	60				1	
	0	40	60	90	e	
1	0.999390828	0.999579599	0.999733487	0.999847707	0.000456879	-
10	0.939693	0.958380788	0.973615522	0.984923155	0.045230155	
45	0	0.309881933	0.5625	0.75	0.75	

.752.

向不同,也会产生不同的扫描轨迹。图 $2 \pm \theta = 13^\circ$, 采用部分照明方式,只改变扫描器和扫描物镜的相 对取向在扫描物镜后的一些非圆轨迹。

曲线场扫描的圆轨迹类似平面场扫描直线轨 迹。直线扫描和圆扫描在被测物体上相等的时间提 供相等的空间增量,两者都可用于检测。曲线场扫 描的非圆轨迹类似于平面场非直线轨迹,它们在相 等的时间提供不等的空间增量。这一结论对扫描器 为一般情况仍然成立。 谨向对本工作给予很大帮助的黄庆翀同志致 谢。

参考文献

 [1] LeoBeser; "Laser Application", Vol. 2, Academic Press, 1974, 76~77.

> (辽宁省电子技术研究所 李树果 1984年2月24日收稿)

He-Ne 激光照射家兔皮肤组织的实验研究

Abstract: He–Ne laser was used from 1981 to 1983 to irradiate the rabbit skin with fibreoptic guided light and defocusing light one meter away. The results show the capillaries were slightly congested with imflammatory cells infiltration in the superficial parts of the dermis. Three minute irradiation proves to bring the best results and the fibre-optic guided light is more effective.

观察氦-氖激光在不同照射时间后皮肤组织的 变化,对探讨激光通过导光纤维和激光局部照射的 最佳照射时间有重要意义。我们从1981年10月31 日至1983年5月31日对家兔进行试验,用同一功 率的 He-Ne 激光不同照射时间,观察皮肤组织的变 化。

实验方法

本实验共用 30 只健康的雄兔,体重 2500 克左 右,30 只兔分成两组(每组 15 只)。

第一导光纤维组: He-Ne 激光通过导光纤维到 探头,将探头放在臀部,照1分、2分、3分、5分 钟。功率1毫瓦,功率密度约14毫瓦/厘米²。

第二散焦组:输出功率20毫瓦,光斑直径2.4 厘米,功率密度约4毫瓦/厘米²。氦-氖激光照射臀 部1分、2分、3分、5分钟。

第三对照组: 未照激光的 60 例正常皮肤组织。 (同体的未照射部位皮肤组织对照)

被观察的每只兔子各选五个部位(一例),间隔 1、5公分。依次用激光照射四个部位后,随即取照前 和照后各点皮肤组织活检,一、二各组做皮肤组织 120例。取 60 例标本作对照,三个组共做皮肤组织 切片 300例。以 10% 的福马林固定后制成 组织切 片标本,用苏木精-伊红常规染色后制成,进行皮肤 组织显微镜下观察。

结果

一、导光组: 激光对表面各层细胞结构无影响。

(1)照1分钟的30例中,真皮浅层血管轻度充血7例,出现中性细胞少量2例,淋巴细胞少量的5 例和中量2例(见图1)。

(2) 照 2 分钟 30 例中,真皮浅层血管轻度充血 14 例,出现中性细胞少量 4 例,淋巴细胞少量 12 例 和中量的 2 例, 嗜酸性细胞少量 4 例和中量的 1 例 (见图 2)。

(3)照3分钟30例中,真皮浅层血管轻度充血 16例,出现中性细胞少量1例,淋巴细胞少量15例 和中量1例,嗜酸性细胞少量7例,真皮中层出现中 性细胞1例(见图3)。

(4) 照 5 分钟 30 例中,真皮浅层血管轻度充血 13 例,出现中性细胞少量1 例和中量1 例,淋巴细胞

图1 导光组,照射1分钟后真皮浅层轻度血管充血, 少量淋巴细胞,少量嗜酸性白细胞